Jump to content

  • Welcome to Auto Parts Forum

    Whether you are a veteran automotive parts guru or just someone looking for some quick auto parts advice, register today and start a new topic in our forum. Registration is free and you can even sign up with social network platforms such as Facebook, X, and LinkedIn. 

     

Recommended Posts

Posted

rssImage-5b31f4eac53dab6d4bd430b0e9a58d84.jpeg

This episode of the Road to AAPEX takes us to Grand Rapids, Mich., for a trip to Auto-Wares, where host Joe Keene learns about the company’s history, operations and distribution of auto parts. Auto-Wares works closely with manufacturers like BCA Bearings, a division of NTN, to ensure high-quality OE replacement parts are delivered to where they’re needed most.

That leads us to our next stop—NTN’s Mt. Prospect, Ill., location. There, we take a close look at the company’s focus on manufacturing high-quality products. NTN also discusses the importance of AAPEX as a platform to showcase new products and to connect with customers. Then, it’s back to Michigan, and Tamrox Automotive in Jackson, Mich., for an NTN wheel bearing replacement. Watch the video for a demonstration of the process and for insights on customer service and technician retention.

The post

link hidden, please login to view
appeared first on
link hidden, please login to view
.

link hidden, please login to view

Sell your car with CarBrain

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
  • Similar Topics

    • By Counterman
      MAHLE showcased its full-service portfolio of products at AAPEX. The company said it aims to position itself as a “one-stop shop” for technicians, shop owners and drivers. Key offerings highlighted at this year’s AAPEX show included
      link hidden, please login to viewgaskets, engine components, filters and thermal management solutions as well as the company’s battery diagnostic systems, A/C units and latest shop equipment. “Our goal is to further expand MAHLE Aftermarket’s leading role in the global market with attractive offers for repair shops and trade,” said Eduardo Spilla, general manager,
      link hidden, please login to viewAftermarket North America. “We are particularly focused on electrification, digitalization, and sustainability in order to help create the future of transportation and do our part in providing high-quality solutions to customers around the world.” More information on MAHLE can be found online or by contacting MAHLE local sales representatives.

      The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view
    • By GreenGears Auto Limited
      The automotive industry is undergoing a profound transformation, driven by the synergistic forces of connectivity and autonomous driving. These technological advancements are poised to reshape the transportation landscape, promising safer, more efficient, and more accessible mobility solutions for individuals and societies alike.
      Connectivity, the ability of vehicles to communicate with each other and their surroundings, is laying the foundation for intelligent transportation systems that can revolutionize the way we navigate our roads. Autonomous driving, on the other hand, envisions a future where vehicles can operate without human intervention, offering the potential for unprecedented levels of safety and convenience.
      This in-depth exploration delves into the complexities of connectivity and autonomous driving, examining their underlying technologies, current progress, challenges, and the transformative impact they are expected to have on our world.
      The Evolution of Connectivity: From Isolated Vehicles to Interconnected Networks
      Historically, vehicles have been isolated entities on the road, relying solely on the driver's perception and decision-making. However, the advent of connectivity has transformed cars into sophisticated communication hubs, capable of gathering and exchanging vast amounts of data in real-time.
      This transformation has been made possible by a convergence of technological advancements, including:
      Sensor Technology: Vehicles are now equipped with a wide range of sensors, including cameras, radars, lidars, and ultrasonic sensors, that enable them to perceive their surroundings in detail. These sensors collect data about the vehicle's position, speed, proximity to other objects, and road conditions. Wireless Communication: Technologies like Dedicated Short-Range Communications (DSRC) and Cellular Vehicle-to-Everything (C-V2X) allow vehicles to communicate wirelessly with each other and with infrastructure elements like traffic lights and road signs. Cloud Computing and Data Analytics: The vast amounts of data generated by connected vehicles are processed and analyzed in the cloud, enabling real-time decision-making and the development of intelligent transportation systems. Types of Connectivity:
      Connectivity in the automotive realm manifests in various forms, each with its own distinct benefits:
      Vehicle-to-Vehicle (V2V) Communication: Enables direct communication between vehicles, allowing them to share information about their speed, location, and intended maneuvers. This creates a virtual awareness network, enhancing safety by alerting drivers to potential hazards and enabling cooperative driving behaviors.
      Vehicle-to-Infrastructure (V2I) Communication: Facilitates communication between vehicles and roadside infrastructure, such as traffic lights, road signs, and toll booths. This allows for optimized traffic flow, reduced congestion, and improved safety through real-time information sharing.
      Vehicle-to-Network (V2N) Communication: Connects vehicles to cloud-based services and applications, providing access to real-time traffic updates, navigation assistance, and other infotainment features.
      Vehicle-to-Pedestrian (V2P) Communication: Enables vehicles to communicate with pedestrians and cyclists, particularly in urban environments. This can enhance safety for vulnerable road users by alerting them to the presence of vehicles and potential dangers.
      Benefits of Connectivity:
      The widespread adoption of connectivity has the potential to unlock numerous benefits for individuals, society, and the environment:
      Enhanced Safety: By facilitating real-time data exchange and situational awareness, connectivity can help prevent accidents and reduce fatalities on the roads. Features like collision avoidance systems, lane departure warnings, and blind spot monitoring leverage connectivity to provide drivers with timely alerts and assistance.
      Improved Traffic Flow: Connectivity enables intelligent transportation systems to optimize traffic flow by adjusting signal timings, providing real-time traffic information, and recommending alternative routes. This can lead to reduced congestion, shorter travel times, and improved fuel efficiency.
      Enhanced Convenience and Comfort: Connected vehicles offer a plethora of features that enhance the driving experience, including:
      Remote vehicle access and control In-car entertainment and infotainment systems Personalized navigation and route optimization Real-time vehicle diagnostics and maintenance alerts Over-the-air software updates Environmental Sustainability: By optimizing traffic flow and promoting fuel-efficient driving behaviors, connectivity can contribute to reducing greenhouse gas emissions and improving air quality.
      The Path to Autonomous Driving: From Assisted to Fully Autonomous
      Autonomous driving, often referred to as self-driving technology, aims to automate the driving experience entirely, freeing drivers from the need to control the vehicle. This technology is being developed in stages, with increasing levels of autonomy, as defined by the Society of Automotive Engineers (SAE):
      Levels of Autonomous Driving
      Level Description 0 No automation. The driver is fully in control of the vehicle at all times. 1 Driver assistance. The vehicle provides limited assistance with tasks such as steering or accelerating, but the driver remains primarily in control. 2 Partial automation. The vehicle can control both steering and acceleration/deceleration under certain conditions, but the driver must remain alert and ready to take control at any time. 3 Conditional automation. The vehicle can perform all driving tasks under specific conditions, but the driver may still need to intervene in certain situations. 4 High automation. The vehicle can perform all driving tasks under most conditions, and the driver may be able to disengage completely. 5 Full automation. The vehicle can perform all driving tasks under all conditions, and there is no need for a human driver. Key Technologies Enabling Autonomous Driving
      The development of autonomous vehicles relies on a complex interplay of various technologies:
      Sensor Fusion: Combines data from multiple sensors like cameras, radars, and lidars to create a comprehensive and accurate picture of the vehicle's surroundings. Artificial Intelligence (AI) and Machine Learning: Enables the vehicle to perceive, interpret, and respond to its environment in real-time, making decisions based on complex algorithms and learned patterns. High-Definition Mapping: Provides detailed maps of the environment, including road layouts, lane markings, traffic signs, and other relevant information. Vehicle Control Systems: Actuators and control systems enable the vehicle to execute commands from the autonomous driving system, such as steering, accelerating, braking, and changing lanes. Current State of Autonomous Driving
      While fully autonomous vehicles (Level 5) remain a long-term goal, significant progress has been made in developing and deploying lower levels of autonomy.
      Advanced Driver-Assistance Systems (ADAS): Features like adaptive cruise control, lane keeping assist, and automatic emergency braking 1 are becoming increasingly common in new vehicles, representing Level 1 and Level 2 autonomy.   Robotaxis and Autonomous Shuttles: Several companies are testing and deploying autonomous vehicles in controlled environments, such as designated areas within cities or university campuses. These vehicles often operate at Level 4 autonomy, with limited human supervision. Commercial Applications: Autonomous trucks and delivery vehicles are being developed and tested for logistics and transportation applications, offering the potential for increased efficiency and reduced costs. Challenges and Concerns
      Despite the significant progress, several challenges and concerns remain on the road to fully autonomous driving:
      Technological Limitations: Current sensor technologies and AI algorithms still struggle to handle complex and unpredictable scenarios, such as adverse weather conditions, construction zones, or interactions with pedestrians and cyclists. Safety and Liability: Ensuring the safety of autonomous vehicles and determining liability in the event of accidents are critical concerns that need to be addressed through robust testing, validation, and regulatory frameworks. Public Acceptance: Gaining public trust and acceptance of autonomous vehicles will require addressing concerns about safety, job displacement, and the potential for misuse of the technology. Infrastructure: Widespread adoption of autonomous vehicles will necessitate significant investments in infrastructure, including intelligent transportation systems, high-definition maps, and communication networks. The Transformative Impact of Connectivity and Autonomous Driving
      The convergence of connectivity and autonomous driving has the potential to revolutionize the transportation sector and society as a whole:
      Improved Safety: By eliminating human error, which is a leading cause of accidents, autonomous vehicles have the potential to significantly reduce fatalities and injuries on the roads. Studies suggest that autonomous vehicles could reduce traffic fatalities by up to 90%.
      Increased Efficiency: Connected and autonomous vehicles can optimize traffic flow, reduce congestion, and improve fuel efficiency. This can lead to significant time and cost savings for individuals and businesses, as well as a reduction in greenhouse gas emissions.
      Enhanced Accessibility: Autonomous vehicles can provide mobility solutions for individuals who are unable to drive, such as the elderly or those with disabilities, enhancing their independence and quality of life.
      New Business Models: The advent of autonomous vehicles could give rise to new business models and services, such as ride-hailing, car-sharing, and delivery fleets. These models could transform the way we think about transportation, making it more accessible and affordable for everyone.
      Urban Transformation: Autonomous vehicles could lead to a redesign of urban spaces, with less need for parking lots and potentially more space for green areas and pedestrian zones.
      The Road Ahead: Navigating the Challenges and Opportunities
      The path to a fully connected and autonomous transportation future is filled with both challenges and opportunities. As technology continues to advance and regulatory frameworks evolve, we can expect to see a gradual but steady shift towards a more automated and interconnected transportation landscape.
      The automotive industry, along with governments, technology companies, and other stakeholders, will need to collaborate to address the challenges and ensure the safe and responsible deployment of these technologies. Public education and engagement will also be crucial in building trust.
       
      www.GreenGearsAuto.com
    • By Counterman
      The automotive aftermarket’s premiere event, AAPEX 2024, is now just a matter of weeks away. As Carm Capriotto explains in the latest edition of AAPEX Insights, the event is not just an opportunity to explore new products, but a chance to significantly enhance your business.
      In this installment, Capriotto details the benefits of attending AAPEX. He recalls one shop owner’s enthusiasm as he discovered new products and networked with suppliers. This kind of interaction—seeing, touching and asking questions about new tools—provides a level of insight that online research simply cannot match.
      Capriotto discusses AAPEX with Matt Fanslow, manager at Riverside Automotive in Red Wing, MN, and host of the “Diagnosing the Aftermarket A to Z” podcast. They note a growing trend among shops that attend AAPEX: They return with renewed energy and knowledge that can directly boost their revenue. Any temporary disruption caused by closing a shop for a few days to attend AAPEX is outweighed by the increased efficiency and innovation that follows.
      Fanslow compares the AAPEX experience to a trip to Disney World—expensive but worth the investment. Just as people plan and sacrifice to make a memorable trip happen, investing in AAPEX can significantly improve your shop’s operations and team capabilities. The exposure to new technologies and networking opportunities can invigorate your business and motivate your team.
      The knowledge gained, the relationships built, and the new tools and techniques discovered at AAPEX can lead to substantial long-term benefits. This year’s show runs from November 5-7 in Las Vegas. You can register at
      link hidden, please login to view. The post
      link hidden, please login to view appeared first on link hidden, please login to view.
      link hidden, please login to view

×
  • Create New...